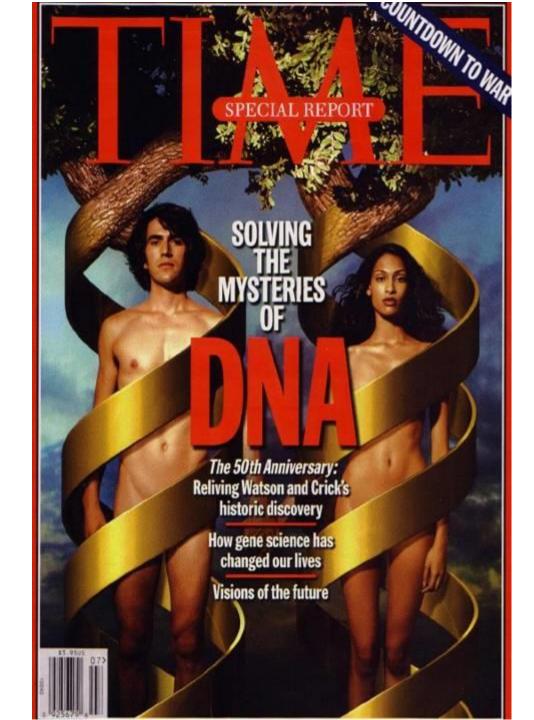
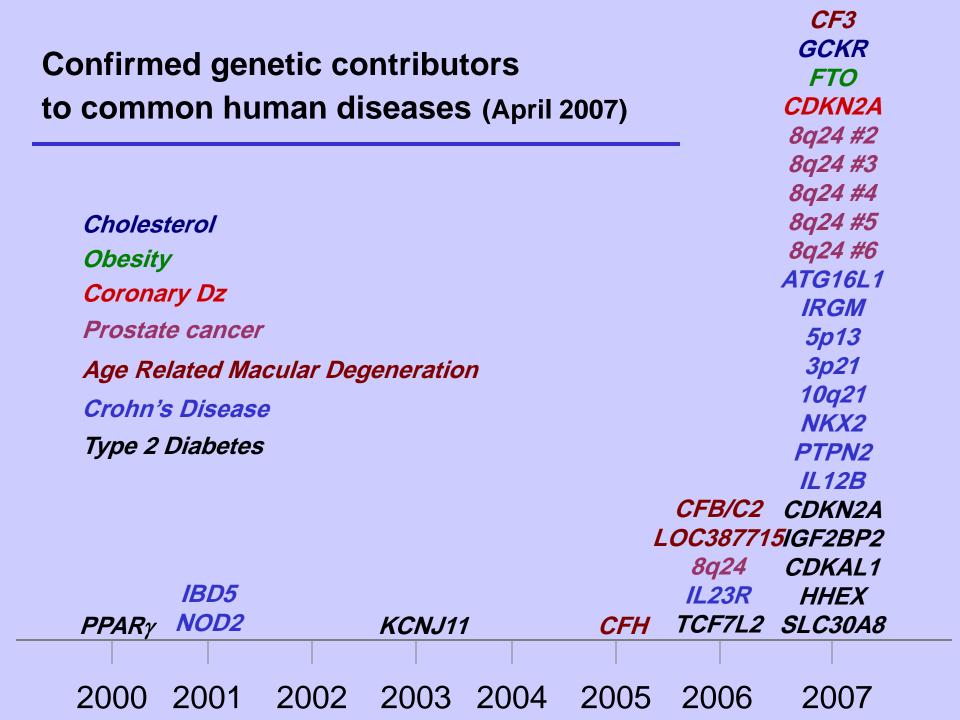

Introductory of Bioinformatics?

Dr . Amr El Kelish


Lecture of Plant Physiology, Faculty Of Science, Suez Canal University


PhD. Technical University Of Munich, Germany

16-08-2015

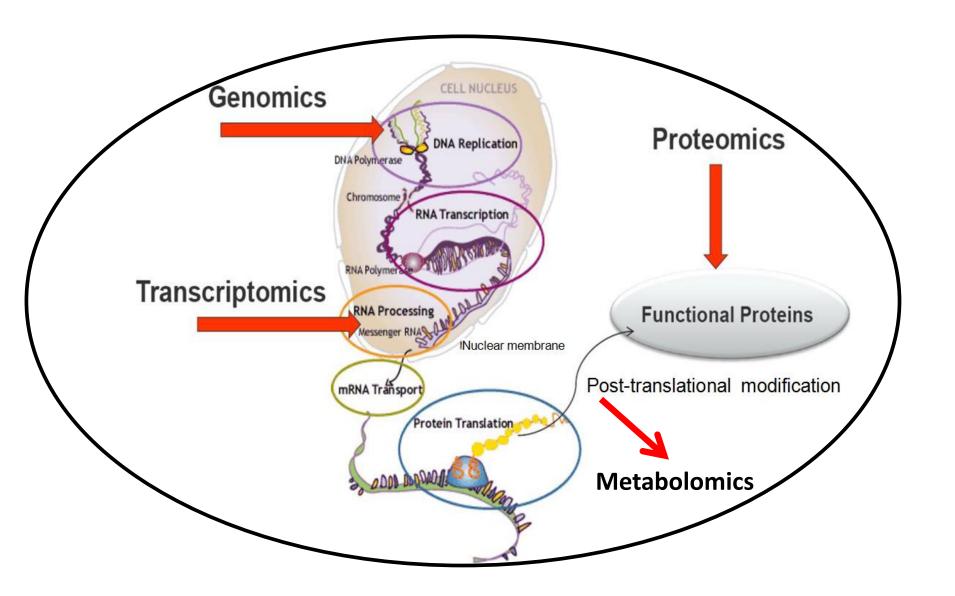
Confirmed genetic contributors to common human diseases (Sept 2007)

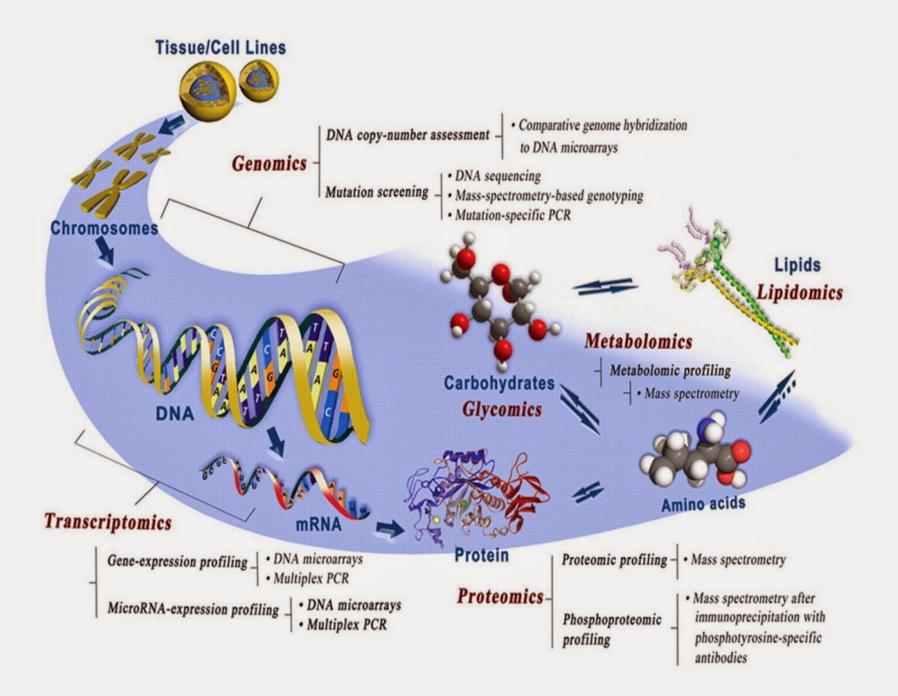
Cholesterol **Obesity** Coronary Disease QT interval Atrial Fibrillation *Type 2 Diabetes* Prostate cancer Breast cancer

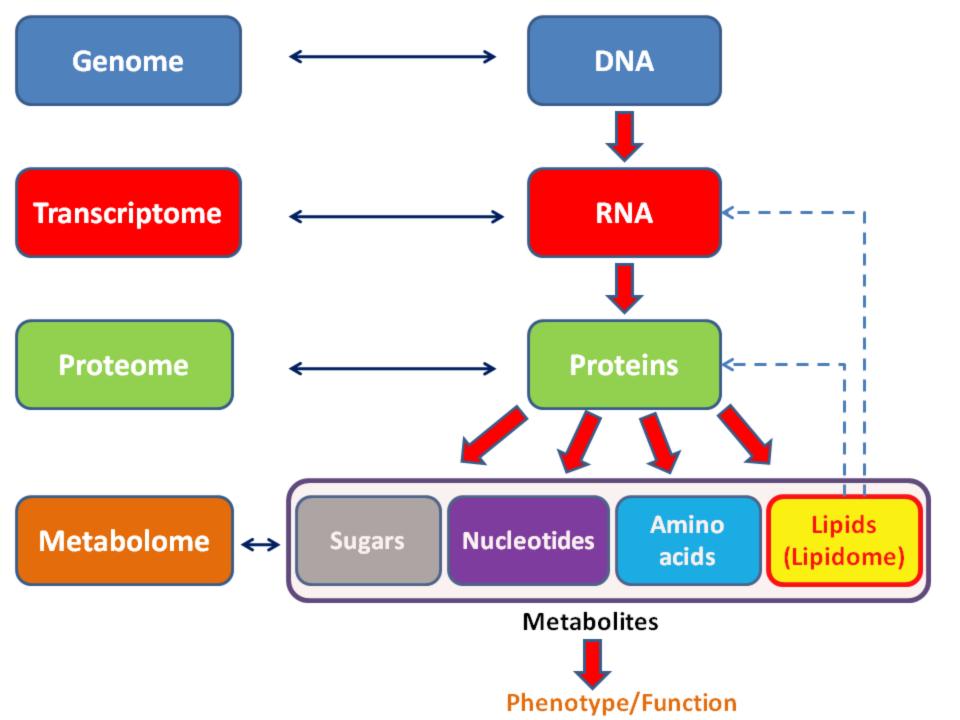
IBD5

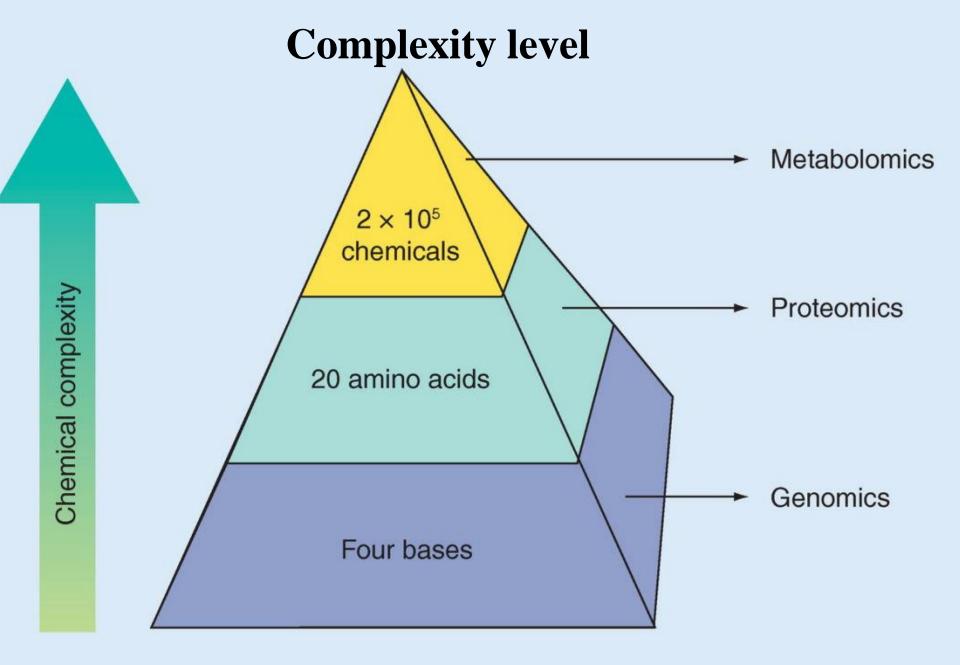
Age Related Macular Degeneration Crohn's Disease Type 1 Diabetes Systemic Lupus Erythematosus Asthma Restless leg syndrome Gallstone disease NOS1AP Multiple sclerosis IFIH1 Rheumatoid arthritis PCSK9 Glaucoma CFB/C2 CD25 LOC387715 IRF5 8q24

MEIS1 **CDKN2A**LBXCOR 8q24 #2 1 *8q24 #3* BTBD9 *C3* 8q24 #4 8q24 #5 8q24 #6 ORMDL3 ATG16L1 4q25 TCF2 **5**p13 10a21 GCKR LOXL1 IRGM **FTO** IL7R NKX2-3 C12orf0 TRAF1 IL12B ERBB3 STAT4 3p21 KIAA030ABCG8 CD226 GALNT2 1a24 PTPN2 16p13 PSRC1 TCF2 PTPN2 NCAN CDKN2B/ SH2B3 TBL2 FGFR2 TRIB1 Α TNRC9 KCTD10 IGF2BP2 CDKAL1 MAP3K1 ANGLPT3


PCSK9 NOD2 TCF7L2 **GRIN3A** KCNJ11 HHEX LSP1 $PPAR\gamma$ CTI A4 PTPN22 CFH SLC30A8 8a24 2002 2003 2004 2000 2001 2005 20062007


IL23R


Omic' Technologies


- Holistic view of the molecules that make up a cell, tissue or organism.
- They include the universal detection of genes (genomics),
 mRNA (transcriptomics), proteins (proteomics) and
 metabolites (metabolomics) in a specific biological sample in
 a non-targeted and non-biased manner.
- This can also be referred to as high-dimensional biology; the integration of these techniques is called **Systems Biology**

Central Dogma of life

Genomics

- It is the systematic study of an organism's genome.
- The genome is the total DNA of a cell or organism.
- The human genome contains **3.2 billion bases**
- They can reveal **abnormalities** such as chromosomal **insertions** and **deletions** or **abnormal** chromosomal numbers in a process called **comparative genomic hybridisation**.

Research area of Genomics

• Functional genomics

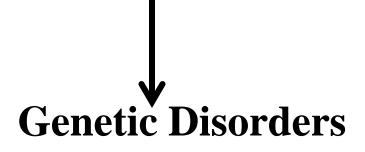
Describe gene (and protein) functions and interactions)

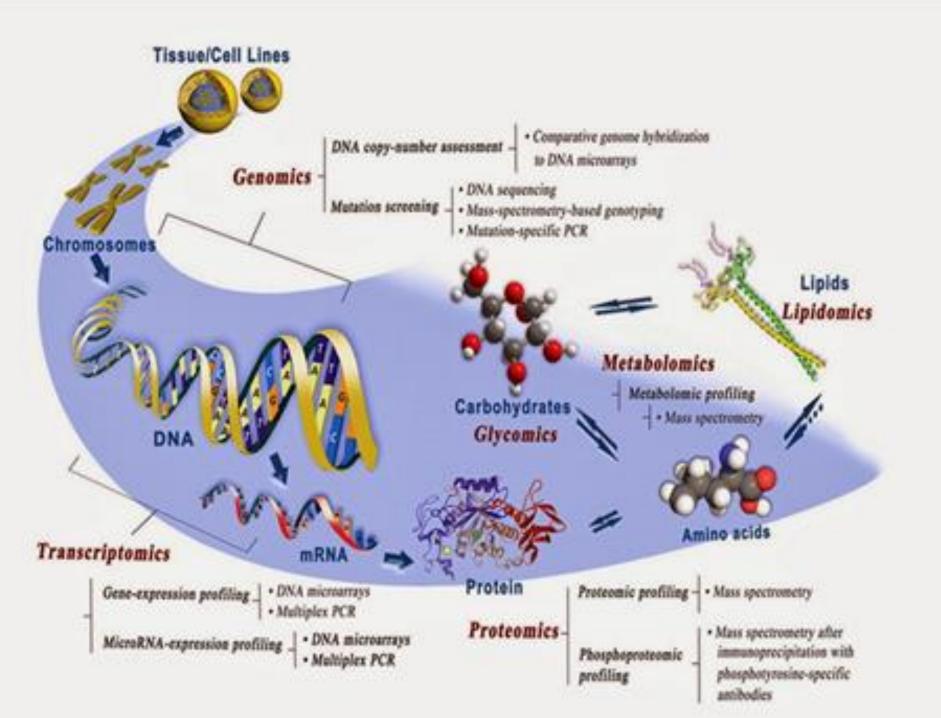
• Structural genomics

Describe the 3-dimensional structure of every protein encoded by a given genome).

• Epigenomics

Chemical changes to **DNA** and **histone** proteins of an organism that can be passed down to an offspring


Metagenomics


Study of genetic material recovered directly from environment samples

Importance of Genomics for Human

- All humans have 99.9% identical genetic makeup.
- The remaining 0.1% may provide useful information about diseases.
- Goal :

To show why some people get sick from certain infections and environmental changes while others do not.

Transcriptomics

Specific gene expression

Genes and signatures determined by particular genetic, epigenetic regulatory factors, environmental exposures

Exploratory approaches

E.g global gene expression in tumors versus healthy tissues, differential responses to distinct environmental exposures

Disease etiology and classification

Patterns/signatures rather than single markers can improve knowledge about etiology and diagnosis

International Agency for Research on Cancer

Biology

Development and Morphology (juveniles vs adults)
 Interactions between organisms (antagonistic, mutualistic)
 Interactions between organisms and their environments
 (temperature, radiation, draught, toxins and heavy metals)
 Evolution (within- and between species variation)
 Functional analyses (wild type vs mutant)

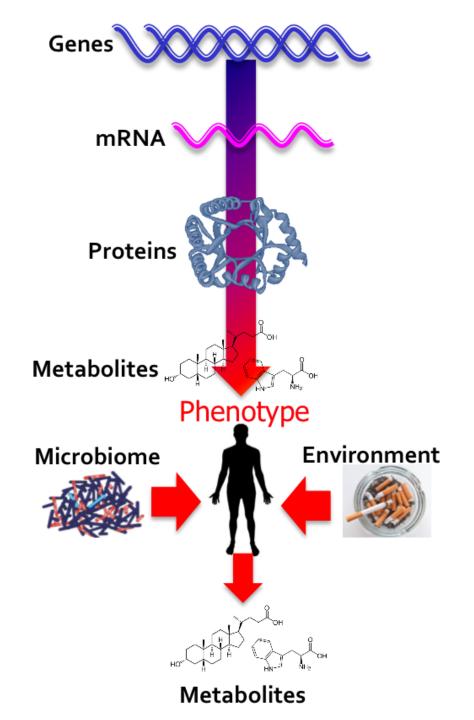
Medicine

Disease-associated expression patterns (diagnosis)
 Cell-cycle monitoring (cancer research)
 Treatment-induced expression pattern (drug development and response)

Proteomics

- Set of all expressed proteins in a cell, tissue or organism.
- Proteomics aims to characterize information flow within the cell and the organism, through protein pathways and networks.
- The proteome is a dynamic reflection of both **genes** and the **environment** and is thought to hold special promise for **biomarker** discovery.

Tumor markers

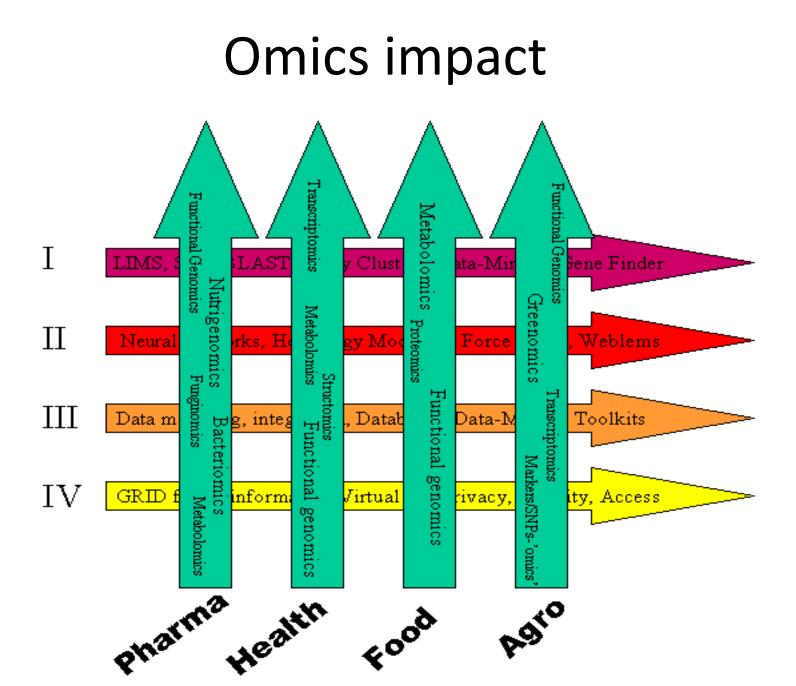

- Diagnostic markers: detection of malignant disease
 - Sensitivity = detected positives / real positives
 - **Specificity = detected negatives / real negatives**

• Prognostic markers: malignant potential, disease recurrence

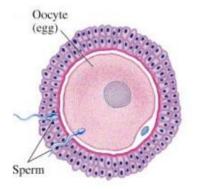
- Predictive markers: response to different therapies
- Positioning markers: positional information (e.g. for surgery)

Metabolomics

- Study of global metabolite profiles in a system (cell, tissue or organism) under a given set of conditions.
- Additionally, as the downstream product, the metabolome is closest to the **phenotype** of the biological system studied.
- Metabolom is more physically and chemically complex than the other 'omes'.


Systems Biology

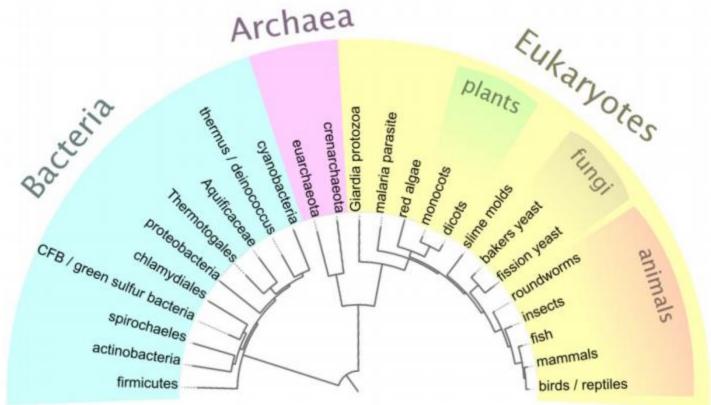
• Biological research focusing on the systematic study of complex interactions in biological systems using integration models.


• The ultimate aim is to understand whole systems, e.g. complex **cellular pathways**, by studying the effect of altered external factors on the **genome**, **transcriptome**, **proteome** and **metabolome** simultaneously

Why Omics ?

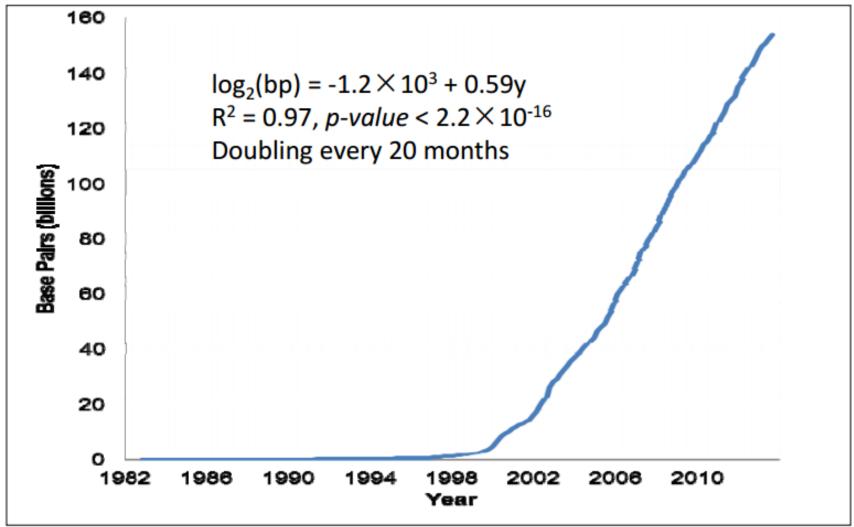
- The basic aspect of these approaches is that a **complex system** can be understood more thoroughly if considered as a whole.
- Omic technology can be applied not only for the greater understanding of **normal physiological** processes but also in disease processes where they play a role in **screening**, **diagnosis** and **prognosis** as well as aiding our understanding of the **aetiology** of diseases.

The miracle of life

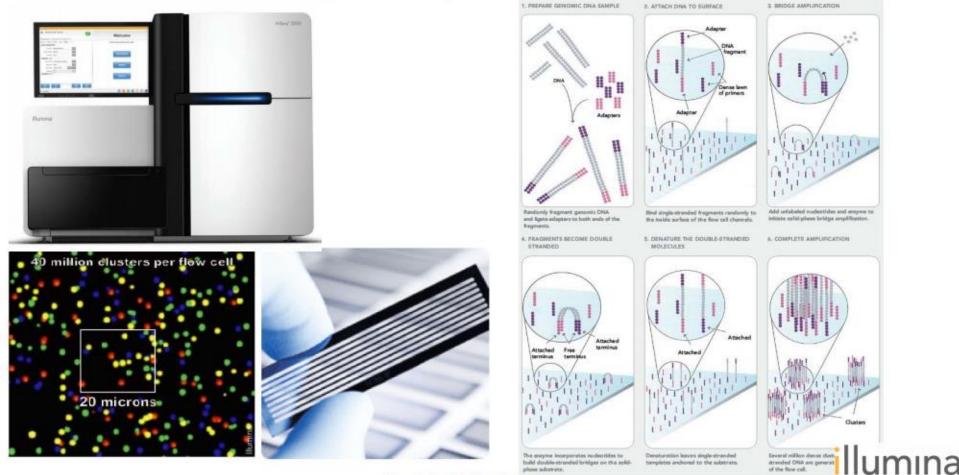


TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT CCTAACCCTAACCC So simple, yet so mysterious... TAACCCTAACCC TAAUUUTAAUUUTAAUCCTAACCCTAAC AACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTAAACCCTAACCCTAACCCTAACCCTAACC ACCCTAACCCCAA ACCCTA ACCCTAACCCCAA CTACCCTAACCCT Human genome has **3.1 billion** base pairs. ACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTCGCGGTACCCTCAGCCGGC AACGCAGCTCCGCCC ~2.9% of the bases encode **genes.** ACTCCGCCGGCGCAG GCGTGG ~97.1% of the genome was previously called "junk". They contain the **regulatory elements** that encode instructions on when, where, which, and how much proteins to make.

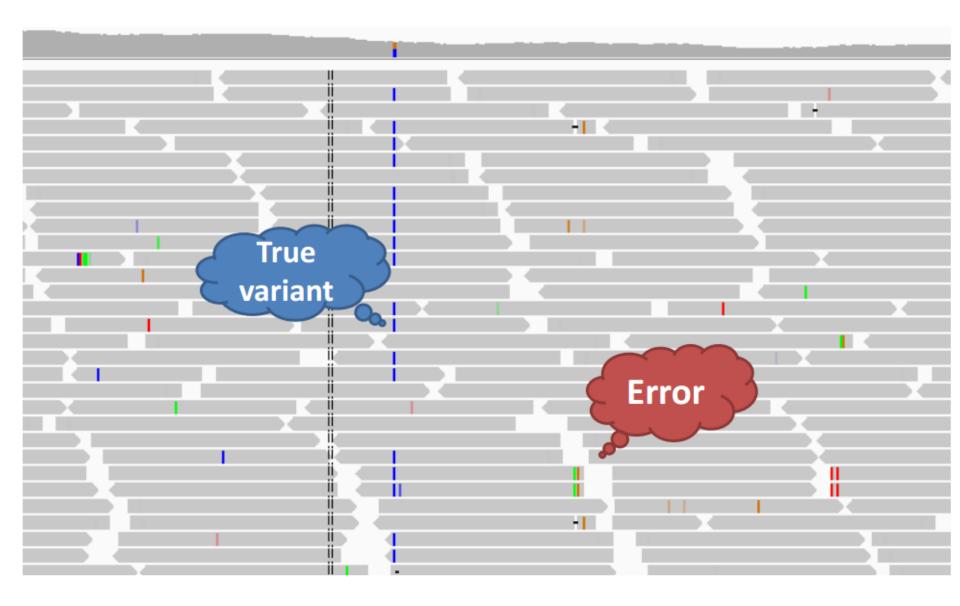
The universal code: Other species' genomes The Tree of Life


http://commons.wikimedia.org/wiki/File:Simplified_tree.png

Human genetic variation


TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT ССтаассстаассстаассстаассстаассстаассстаассстаассстаассстаассстаассстаассс cc How do you **decode** the instructions in this "manual of life"? AACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTAAACCCTAACCCTAACCCTAACCCTAACC ACCCTAACCCCAACCCCCAACCCCCAACCCCCAACCCCTAACCCCTAACCCCTAACCCTA C] A(If you print 100 characters per line and 50 lines per page, **ACC** GGC c you'll fill 600,000 pages, stacked 60 meters high. GAG AACGCAGCTCCGCCCTCGCGGTGCTCTCCGGGTCTGTGCTGAGGAGAACGCAACTCCGCCGGCGČAG CGCAGAGAGGC If you read one base per second, nonstop, GGGGTGGAGGCG CGCAGGCGCAC CGTCCAGGGGTG it will take you **100 years.** TTGCAGGAGCAA GCGTGGCGCAC CACI ACTGC 10¹⁵ basepairs in >165,000 organisms! GCTC TTGCI TGTZ It will take you **30 million years** to finish reading! GTGTA CCCCA

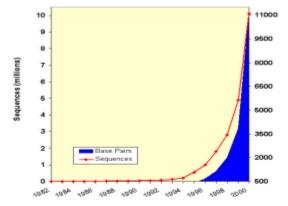
Genbank growth



Data Source: http://ftp.ncbi.nih.gov/genbank/gbrel.txt

Next-Generation Sequencing: Your genome, one day, \$3000!

Copyright C Peking University

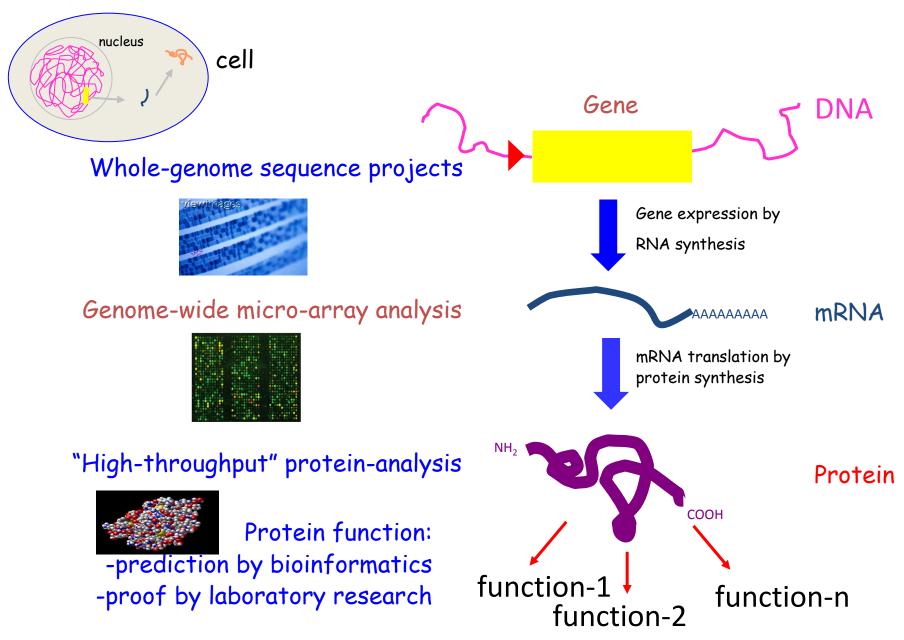

Opportunities and challenges hand-in-hand: the driving forces of bioinformatics

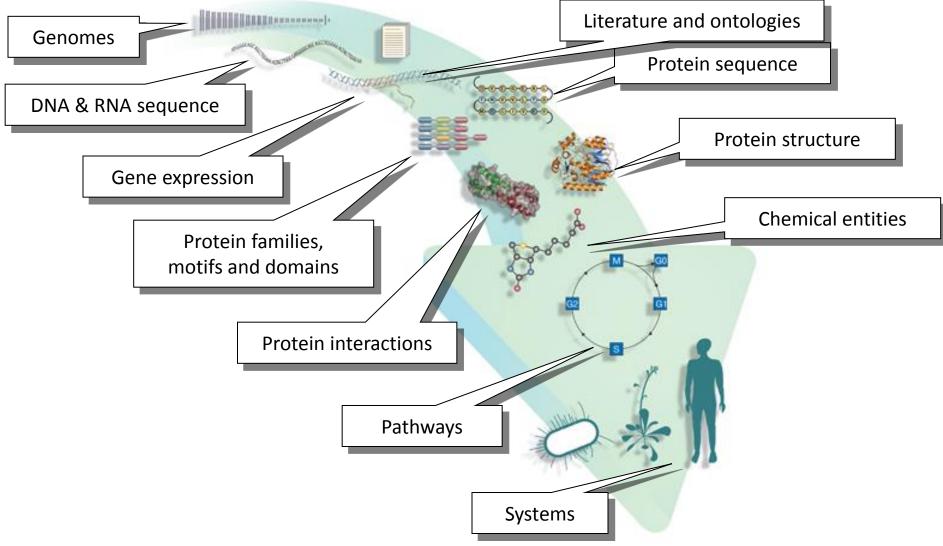
High-throughput data

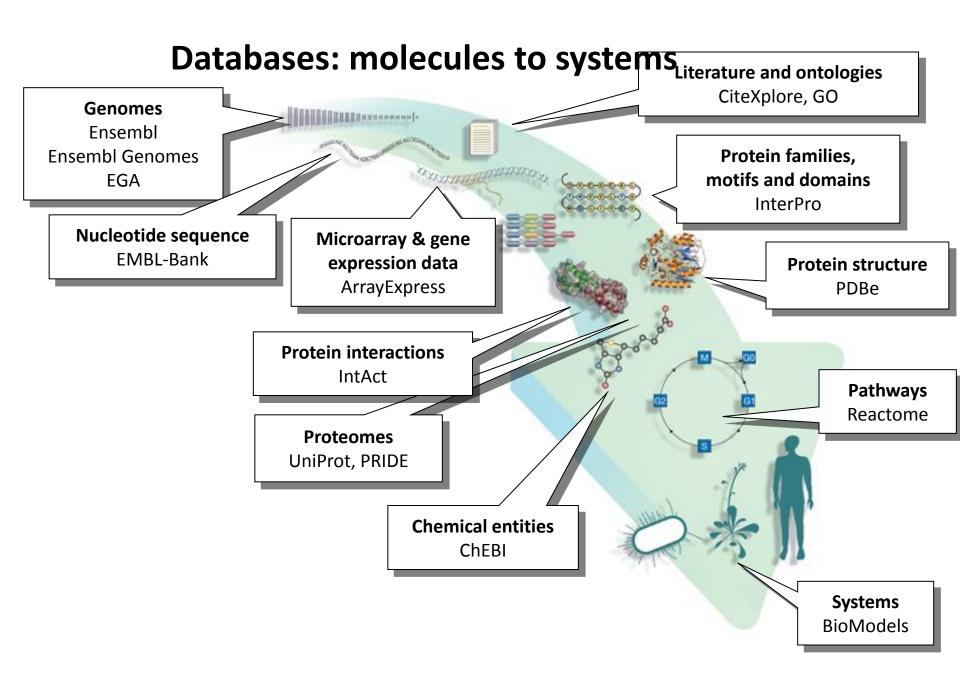
- Huge amount
- Explosive growth
- Low signal-to-noise ratio
- Multiple types

Requirements for the methods

- Data needs to be stored in efficient ontology-based database systems
- The huge amount of data requires efficient algorithms
- Exponential growth requires scalable methods
- The low signal-to-noise ratio requires accurate methods
- Multiple types of data require data integrative methods

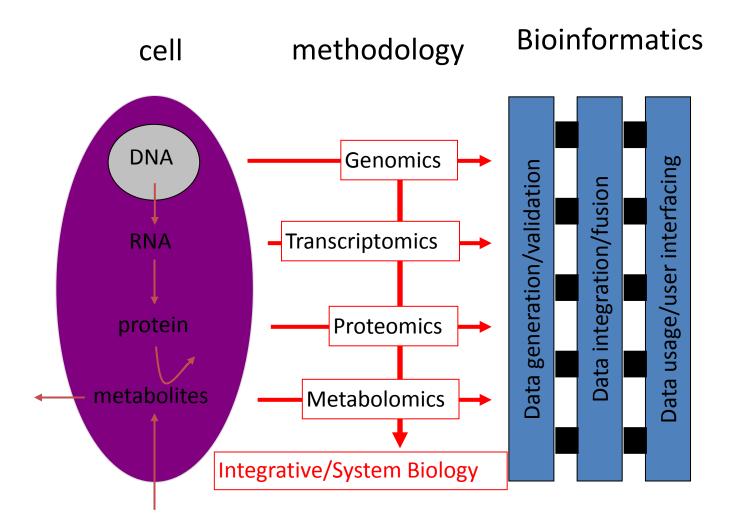

ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt


Results in Paradigm shift in Life sciences


- Past experiments where hypothesis driven
 - Evaluate hypothesis
 - Complement existing knowledge
- Present experiments are data driven
 - Discover knowledge from large amounts of data

Life sciences research: from gene to function

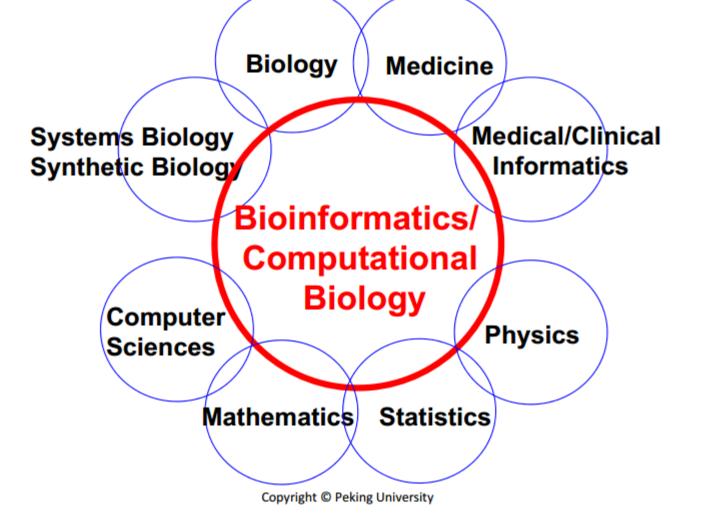
New types of data



Developments towards Bio-informatics & e-Science

- Experiments become increasingly more complex
- Driven by increase of detector developments
- Results in an increase in amount and complexity of data
- Something has to be done to harness this development
 - Bio-informatics to translate data into useful biological, medical, pharmaceutical & agricultural knowledge

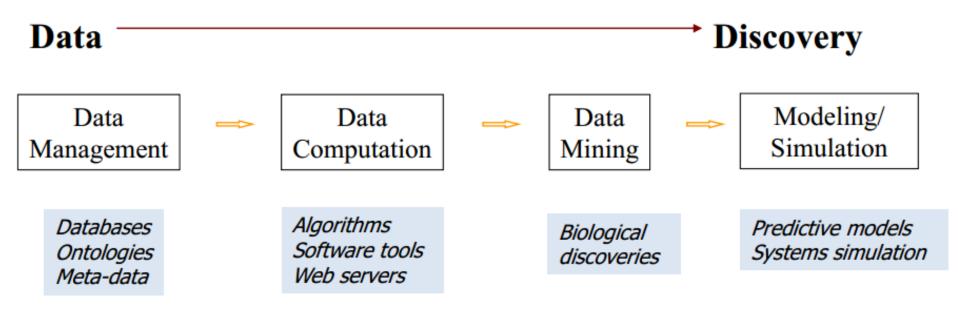
Role of bioinformatics


Bioinformatics

Computer/ Computational Sciences

Life Sciences **<u>Bioinformatics</u>**: an interdisciplinary field that develops and applies computer and computational technologies to study biomedical questions

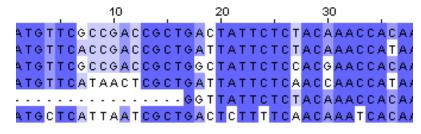
- As a technology, bioinformatics is a powerful technology to manage, query, and analyze big data in life sciences.
- As a methodology, bioinformatics is a top-down, holistic, datadriven, genome-wide, and systems approach that generates new hypotheses, finds new patterns, and discovers new functional elements.


Bioinformatics is an interdisciplinary field

The Bio- in Bioinformatics

G	enotyp	e ———							Phenotype
(DNA/ Genome	RNA -	Proteins			Iolecular 👝 Jetworks	> (Cells 💳	Physiology/ Disease
		Sequence alignment atabase similarity search			Protein interaction networks				
		Motif finding				anscriptional			Population genetics
Gene finding Computationa & comparative genomics		Differential expression Co-expression ncRNA			regulation networks Metabolic and signaling networks Network dynamics				Human genetics
Evolut DNA methy			Mass spec pro identification Structure pred Structure align	lictio	n	sin		rtual cell mulations	

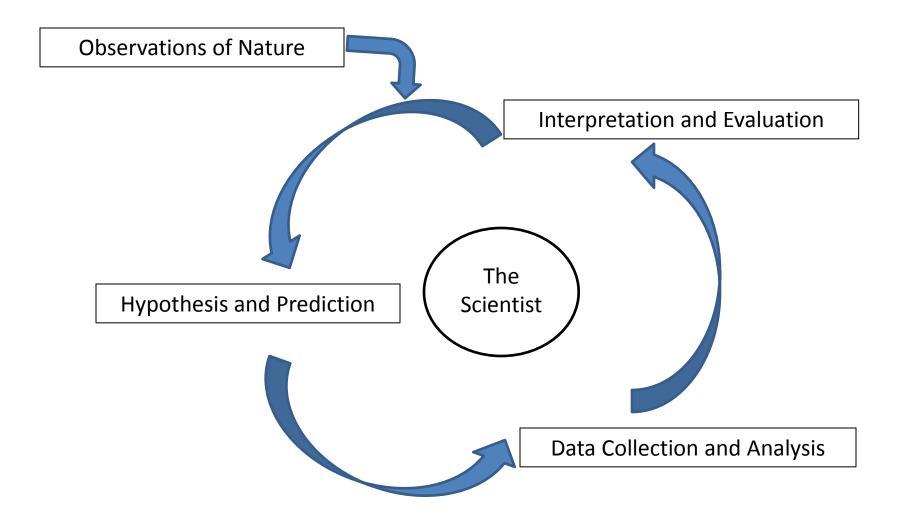
The –informatics in Bioinformatics



Genetic Research Deals with Inherited Traits

Genetic researchers study inherited traits by analyzing DNA sequences.

How are we similar? How are we different?


Use bioinformatics to research differences in DNA sequences.

DNA isolation.

The Practices of Scientific Research

What is Bioinformatics?

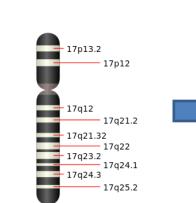
Bioinformatics is the application of computer science and information technology to biology and medicine.

Bioinformatics makes it possible to analyze large quantities of complex biological data and can be used to *search biological databases, compare sequences, and draw molecular structures.*

Bioinformatics Tools Help Scientists:

Organize, Process, and Make Sense of Complex Biological Data Sets

RNA


Codon 2

Codon 5

Codon 6

Codon 7

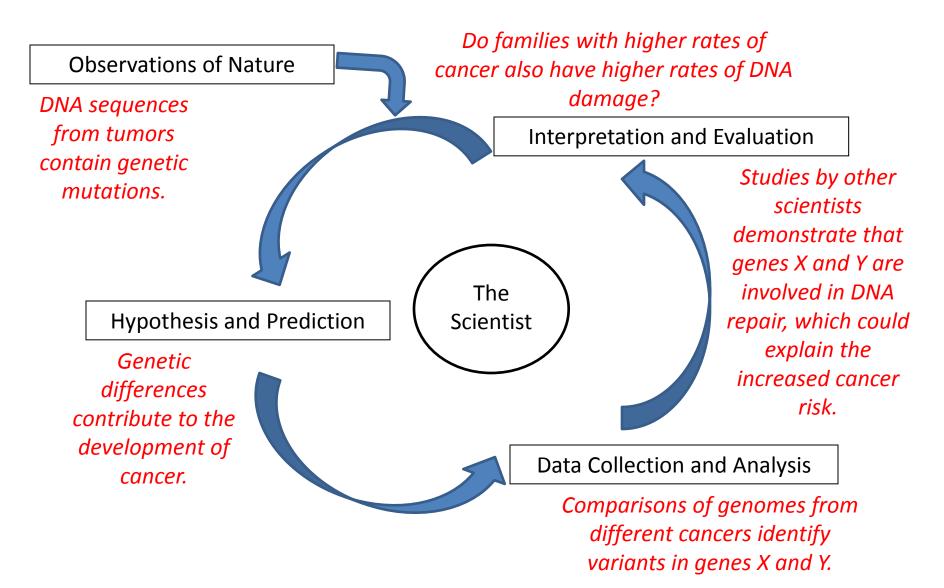
DNA

Bioinformatics Tools:

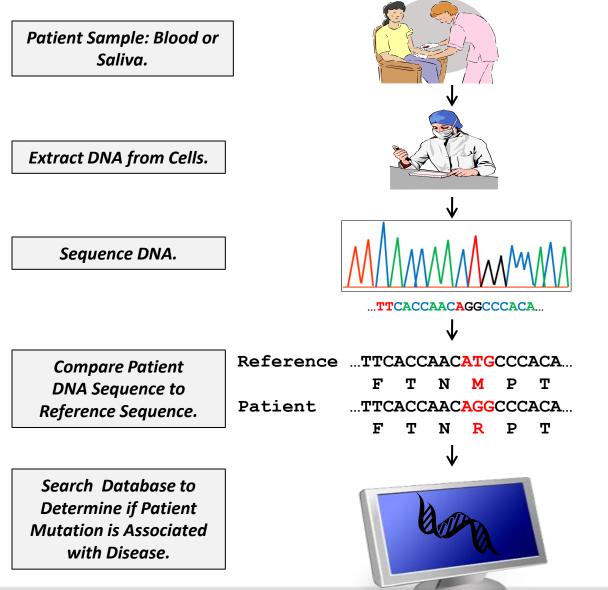
DNA Sequencing Identify Mutations in DNA. Ribonucleic acid

Bioinformatics Tools:

RNA Sequencing Identify tissue specific gene expression.


Protein

Bioinformatics Tools:

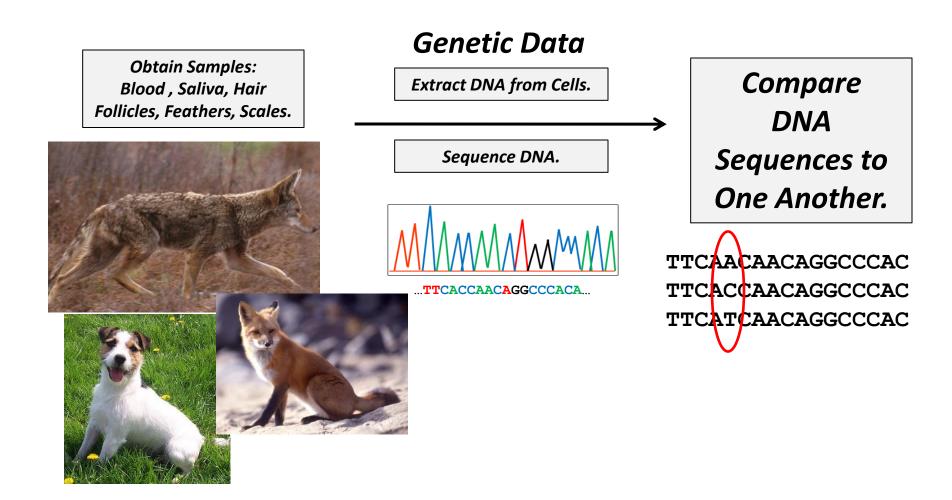

Protein 3D Structure visualization.

Question: What kinds of scientific questions can we answer with bioinformatics tools?

The Practices of Scientific Research

Inside the Gene Machine: How Information from DNA is Acquired and Used for Genetic Testing

Genetic Counselors work with patients to help them decide whether or not to have a genetic test, and help them understand the results of the test.


Lab Technicians work with patient samples in the lab, purifying and sequencing the DNA.

Bioinformatics programmers create computer programs to help biologists analyze data.

Biomedical Researchers perform experiments with patient samples to find different variations of genes that might cause disease. Bioinformatics tools like **BLAST** and **ClustalW** are used to compare sequences.

Medical Doctors and *Veterinarians* use the knowledge gained from genetic testing to care for their patients.

How DNA Sequence Data is Obtained for Genetic Research

Which Animals are Most Closely Related to One Another?

Jack Russell

Gray wolf

Labradoodle

English Shepherd

Red fox

Coyote

Toy Poodle

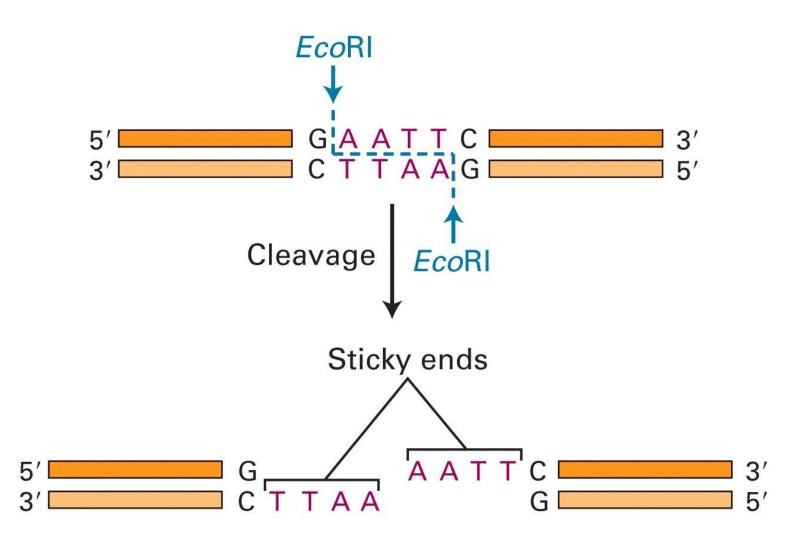
Cocker Spaniel

Multiple Sequence Alignment of Canine DNA Sequences

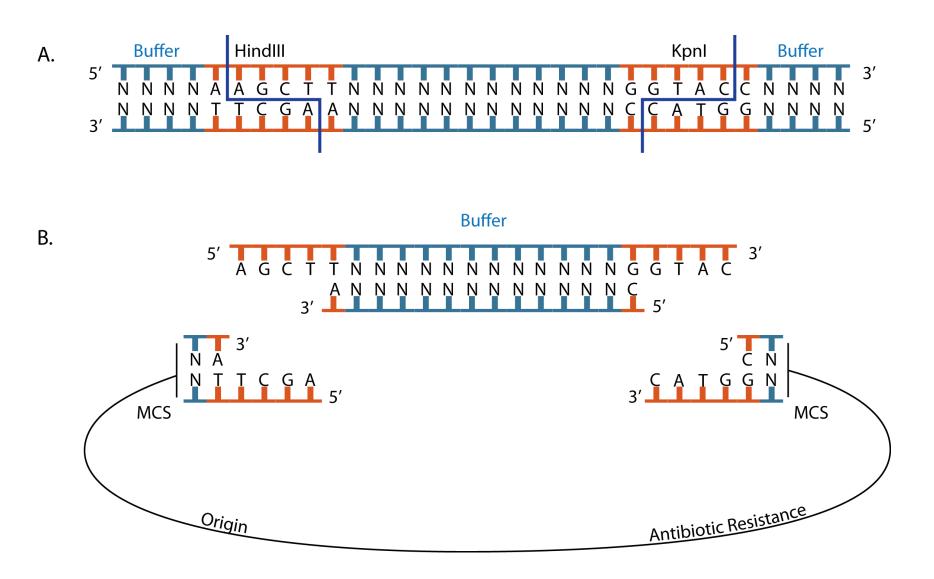
1

GreyWolf/1-883	305 TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC 380
RedFox/1-880	302 TTCCCCCATCCTTTCTTCTACTATTAGCATCTTCCATAGTAGAAGCGGGTGCGGGAACTGGGTGAACCGTATATCC 377
Coyote/1-883	305 TTCCTCCATCTTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGGACTGTATATCC 380
Labradoodle/1-883	305 TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC 380
JackRussell/1-883	305 TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC 380
CockerSpaniel/1-883	305 TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC 380
English Shepherd/1-883	305 TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC 380
ToyPoodle/1-883	305 TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC 380
GreyWolf/1-883	381 CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 458
RedFox/1-880	378 CCCATTAGCTGGTAACCTGGCTCATGCTGGAGCATCAGTGGACCTTACAATTTTCTCCCCTGCACCTGGCCGGAGTC 453
Coyote/1-883	381 TCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGATCTTACAATTTTCTCCTTACATCTAGCTGGAGTC 456
Labradoodle/1-883	381 CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 456
JackRussell/1-883	381 CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 456
CockerSpaniel/1-883	381 CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 456
English Shepherd/1-883	381 CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 456
ToyPoodle/1-883	381 CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 456
GreyWolf/1-883	457 TCTTCTATTTTAGGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCC
RedFox/1-880	454 TCTTCAATTTTAGGAGCTATTAATTTCATCACTACTATTATCAATATAAAACCTCCCGCCATATCCCAATACCAAA 529
Coyote/1-883	457 TCTTCTATTTTAGGGGGCAATCAATTTCATCACCTACTATTATCAACATAAAACCCCCC
Labradoodle/1-883	457 TCTTCTATTTTAGGGGGCAATTAATTTCATCACCTACTATTATCAACATAAAACCCCCC
JackRussell/1-883	457 TCTTCTATTTTAGGGGGCAATTAATTTCATCACCACTATTATCAACATAAAACCCCCC
CockerSpaniel/1-883	457 TCTTCTATTTTAGGGGCAATTAATTTCATCACCACTACTATTATCAACATAAAACCCCCC
English Shepherd/1-883	457 TCTTCTATTTTAGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCTGCAATATCCCAGTATCAAA 532
ToyPoodle/1-883	457 TCTTCTATTTTAGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCTGCAATATCCCAGTATCAAA 532

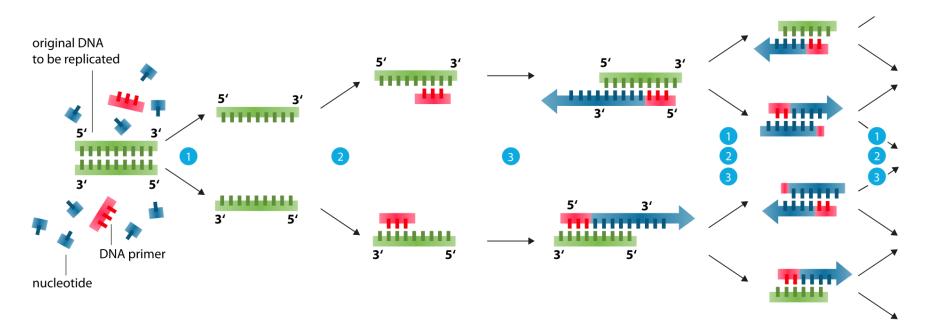
Color Coding Reveals Differences

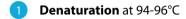

GreyWolf/1-883	2.2.2	TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC3
RedFox/1-880	302	TTCCCCCATCCTTTCTTCTACTATTAGCATCTTCCATAGTAGAAGCG6GT6C666AACT666T6AACC6TATATCC3
Coyote/1-883	305	TTCCTCCATCTTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGGACTGTATATCC3
Labradoodle/1-883	305	TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC3
JackRussell/1-883	305	TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC3
CockerSpaniel/1-883	305	TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTATACCC3
English Shepherd/1-883	305	TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGCATGAACSCTATACCC3
ToyPoodle/1-883	305	TTCCTCCATCCTTTCTTCTACTATTAGCATCTTCTATGGTAGAAGCAGGTGCAGGAACGGGATGAACCGTA ACCC 3
GreyWolf/1-883	381	CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTCTCCCTTACACTTAGCCGGAGTC 4
Red Fox/1-880	378	CCCATTAGCTGGTAACCTGGCTCATGCTGGAGCATCAGTGGACCTTACAAT TTCTCCCTGCACCTGGCCGGAGTC4
Coyote/1-883		TCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGATCTTACAATTTTCTCCTTACATCTAGCTGGAGTC
abradoodle/1-883		CCCACTOGCTOGCAATCTOGCCCATGCAGGAGCATCCOTTOACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 4
lackRussell/1-883		CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC 4
CockerSpaniel/1-883	381	CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTTCTCCTTACACTTAGCCGGAGTC
English Shepherd/1-883	10000	CCCACTOGCTOGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTCTCCTTACACTTAGCCGGAGTC4
ToyPoodle/1-883		CCCACTGGCTGGCAATCTGGCCCATGCAGGAGCATCCGTTGACCTTACAATTTCTCCTCACATTAGCCGGAG7C4
	· · ·	
GreyWolf/1-883	457	TETTETATTTTAGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCTCCAATATCCCAGTATCAAA 5
Red Fox/1-880		TCTTCAATTTTAGGAGCTATTAATTTCATCACTACTATTATCAATATAAAACCTCCCGCCATATCCCAATACCAAA5
Coyote/1-883	457	TCTTCTATTTTAGGGGGCAATCAATTTCATCACTACTATTATCAACATAAAACCCCCC
.abradoodle/1-883	457	TCTTCTATTTTAGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCC
ackRussell/1-883	457	TETTETATTTTAGGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCTGCAATATCCCCAGTATCAAA 5
CockerSpaniel/1-883	457	TCTTCTATTTTAGGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCTGCAATATCCCAGTATCAAA 5
English Shepherd/1-883	457	TCTTCTATTTTAGGGGGCAATTAATTTCATCACCACTATTATCAACATAAAACCCCCC
ToyPoodle/1-883	457	TCTTCTATTTTAGGGGCAATTAATTTCATCACTACTATTATCAACATAAAACCCCCC

Application of Bioinformatics

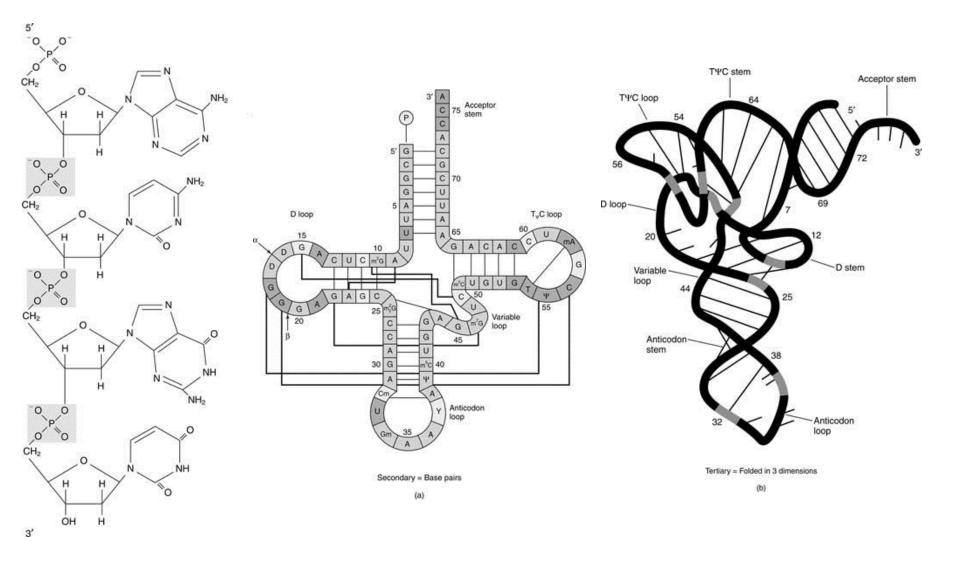

- Retrieving DNA sequences from databases .
- Identifying restriction sites.
- Designing polymerase chain-reaction (PCR) primers.
- Identifying open reading frames (ORFs).
- Predicting elements of DNA/RNA secondary structure .

-Finding repeats.

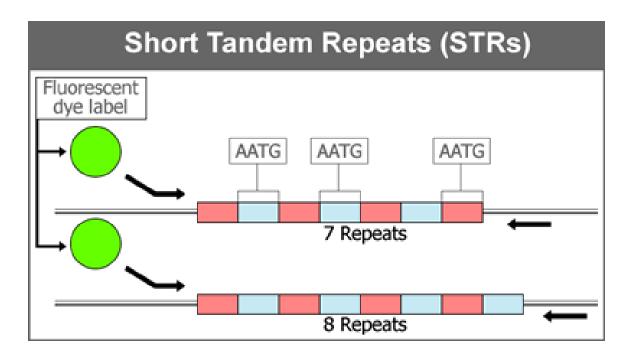

- Computing the optimal alignment between two or more DNA sequences
- Finding polymorphic sites in genes (single nucleotide polymorphisms, SNPs)
- Assembling sequence fragments
- Finding orthologous and paralogous genes.



Restriction sites



Polymerase chain reaction (PCR)


- 2 Annealing at ~68°C
- **Elongation** at ca. 72 °C

Tandem repetitive DNA

Tandem repeats appear in genomic DNA with a wide variety. A tandem repeat in DNA is two or more similar copies of a DNA sequence.

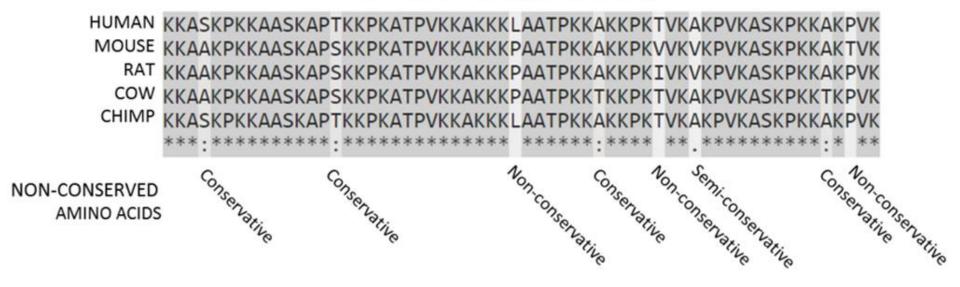
Tandem repeats may not have any functional role. Tandemly repeated DNA sequences are widespread throughout the human genome.

The STR loci carry lots of desirable features which makes them an ideal candidate for diverse applications including:

- **<u>1- Forensic applications</u>**
- **2- Individual identification**
- **<u>3- True paternity/maternity detection</u>**
- **4- Fine scale genetic mapping**

5- Inter and intra group phylogenetic reconstruction.

Who is the Murder?


Hambozo	Cokrat	Dongule	
	00		
		ř	
			_
		_	
		_	

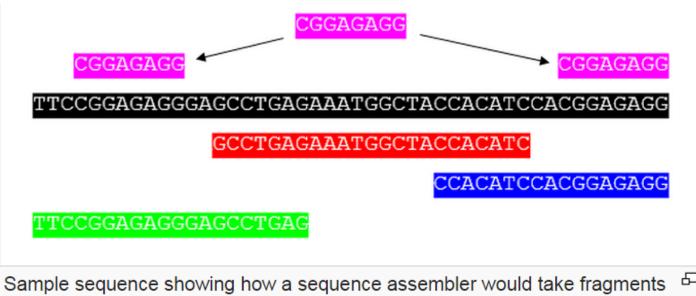
Sequence Alignment

It is a way of arranging the sequences of <u>DNA</u>, <u>RNA</u>, or <u>protein</u> to identify regions of similarity that may be a consequence of functional, <u>structural</u>, or <u>evolutionary</u> relationships between the sequences.

Aligned sequences of <u>nucleotide</u> or <u>amino acid</u> residues are typically represented as rows within a <u>matrix</u>.

Histone H1 (residues 120-180)

A sequence alignment, produced by ClustalO, of mammalian histone proteins.


5

Sequences are the amino acids for residues 120-180 of the proteins. Residues that are conserved across all sequences are highlighted in grey. Below the protein sequences is a key denoting conserved sequence (*), conservative mutations (:), semi-conservative mutations (.), and non-conservative mutations ().^[2]

Sequence Assembly

<u>Aligning</u> and merging fragments of a much longer <u>DNA</u> sequence in order to reconstruct the original sequence.

In <u>DNA sequencing</u> technology cannot read whole genomes in one go, but rather reads small pieces of between 20 and 30000 bases, depending on the technology used.

Sample sequence showing how a sequence assembler would take fragments and match by overlaps. Image also shows the potential problem of repeats in the sequence.

Orthologs vs Paralogs

Orthologs

They are genes of common ancestry between species.

Eg: Dog hemoglobin and human hemoglobin, for example are orthologous.

Paralogs

They are when genes are duplicated then one of the copies evolves a new function.

Eg: Humans would be myoglobin and hemoglobin; both are oxygen storage proteins derived from the same ancestor gene, but have different functions (one is a transport protein in red blood cells, the other is a storage protein in muscle cells).

Impact of Genomics in Medicine

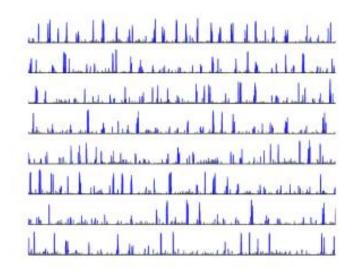
Fungal bioinformatics

Programme Leader(s): Murray Cox Team Member(s): Pierre-Yves Dupont

We are identifying lateral gene transfer events in fungi by developing evolutionary algorithms and computational tools.

Lateral gene transfer

Organisms typically evolve by vertical transmission, where genes are passed from parents to offspring. However, genes are sometimes passed between organisms in a process known as lateral, or horizontal, gene transfer.


Fungal adaptability and gene transfer

Assoc Prof Murray Cox and colleagues at Massey University are investigating whether lateral gene transfer between fungi is a key driving force in the adaptability of fungal species. Laterally transferred genes have been show to confer new functions or traits, such as pathogenicity. Recent research has shown that entire metabolic pathways, as well as individual genes, have been transferred between fungi.

Bioinformatics and fungal genomes

The researchers are comparing genomes in two case study systems with major relevance to the New Zealand economy:

- 1. Dothistroma septosporum, a fungus which causes pine needle blight, costing New Zealand's pine plantation industry \$200 million each year.
- Epichloë festucae, a fungal endophyte which protects New Zealand's pasture grasses from insect damage.

IBIS Institute of Bioinformatics and Systems Biology

Institute	Resources/Services	Publications	Staff	Service
IBIS / Instit	ute / Groups / Fungal & I	Microbial Genomics	/ About	us

Fungal & Microbial Genomics

About us	Staff	Resources	Projects	Publications	News

Welcome to the MIPS Fungal & Microbial Genomics Group

The group focuses on the analysis of fungal and microbial genomes. With former efforts on the model systems yeast and Neurospora we now work on plant pathogenic fungi and advanced model systems, mainly Fusarium spec., Ustilaginaceae and selected human pathogenic bacteria. We also provide comprehensive analysis of further public genome data for comparative analysis.

The basis to explore the species specific properties are correct structural annotations. Thus we improve the gene sets of our core projects and related genome data by applying comparative gene calling procedures. The resulting structurally annotated genomes are used for integration of further omics datasets and comparative studies.

HelmholtzZentrum münchen

German Research Center for Environmental Health

Contact

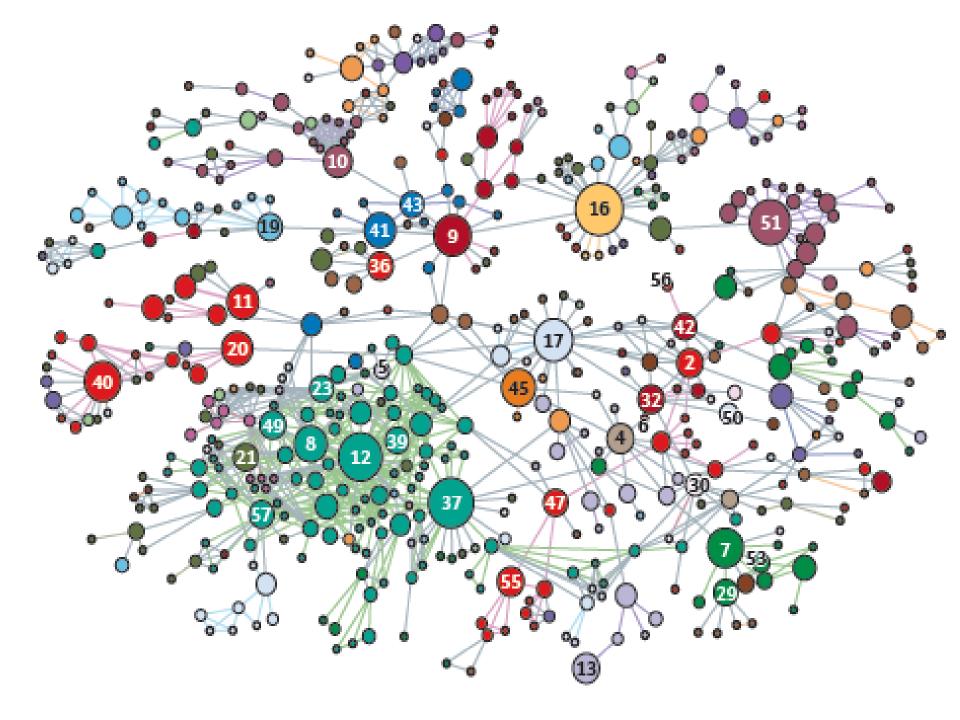
д

Dr. Ulrich Güldener Fungal & Microbial Genomics Institute of Bioinformatics and Systems Biology Helmholtz Zentrum München (GmbH) Ingolstädter Landstrasse 1 D-85764 Neuherberg Germany

⊠ <u>Email</u>

Phone: +49 (0) 89 3187-3582 Fax: +49 (0) 89 3187-3585

Featured Resources


List all analyzed Fungal Genomes - PEDANT			
ftp://ftpmips.gsf.de/fungi/	>		
Fusarium species groups	>		

REVIEWS

Network medicine: a network-based approach to human disease

Albert-László Barabási**§, Natali Gulbahce**II and Joseph Loscalzo§

Abstract | Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular and intercellular network that links tissue and organ systems. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships among apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.

- Aldosteronism Alzheimer's disease
- Anaemia, congenital deserythropoietic
-) Asthma
- 5 Ataxia-telangiectasia
 - Atherosclerosis
 -) Blood group
- Breast cancer
- ④ Cardiomyopathy
 -) Cataract
 -) Charcot-Marie-Tooth disease
- 2 Colon cancer
- Complement component deficiency
- Coronary artery disease
- Coronary spasm
- Deafness
- Diabetes mellitus
- Enclase-β deficiency
 - Epidermolysis bullosa

- Epilepsy Fanconi's anaemia Fatty liver Gastric cancer. Gilbert's syndrome Glaucoma 1A Goitre congenital HARP syndrome HELLP syndrome Haemolytic anaemia (30) Hirschprung disease Hyperbilirubinaemia (32) Hypertension 33 Hypertension diastolic 34 Hyperthyroidism 35 Hypoaldosteronism 66 Leigh syndrome Leukaemia. 67) Low renin hypertension Lymphoma Mental retardation
 - Muscular dystrophy

- Myocardial infarction (43) Myopathy Nucleoside phosphorylase deficiency Obesity (46) Paraganglioma Parkinson's disease Pheochromocytoma Prostate cancer 49 Pseudohypoaldosteronism Retinitis pigmentosa Schizoaffective disorder Spherocytosis Spina bifida Spinocerebellar ataxia (56) Stroke 67) Thyroid carcinoma Total iodide organification defect. 69
 - Trifunctional protein deficiency
 - O Unipolar depression

Top Reasons To study Bioinformatics/Computational Biology

Computing is <u>the</u> key skill set for 21st century biology

Biology is becoming a more quantitative science.

In the future, new discoveries will require leveraging big datasets and using advanced analytical methods.

Big data and complex models require computational skills.

There is no way to escape this reality.

Nobel-prize winning pioneer

• <u>Walter Gilbert</u>:

"To use this flood of [sequence] knowledge, which will pour across the computer networks of the world, biologists not only must become computer literate, but also change their approach to the problem of understanding life"

• <u>Sydney Brenner</u>:

"I spent many hours persuading people that computing was not only going to be the essential tool for biological research but would also provide models for analyzing"

Computational skills are highly transferable

Computational skills transfer across this sector, plus a much wider market outside of the (bio)science.

Increasing your computational chops will give you a better chance at landing a job.

You will have a deeper appreciation for how computers work and more mastery of when you interact with computers in your daily life

Computing will help improve your core scientific skills

Computing forces you to confront and tame the very human tendency to do science in *ad hoc* ways and therefore it naturally develops core scientific skills such as:

- Logically planning experiments
- Collecting data consistently
- Developing reproducible methodology
- Analyzing your data with proper statistical methodology.

You should use you Ph.D./Post-Doc to develop new skills

Majority of Biology Ph.D. students have no training in scientific computing skills beyond using Excel or statistics package.

So you have to start training in something new, not just further developing a skill set that you already have.

You will develop a more unique skill set in Biology

Majority of Biologists have experimental training, but very few have advanced Computational training.

And because you will be able to get results that many others cannot, plus the fact that you will have skills that set you apart from the herd, you will be more competitive on the job market.

You will publish more papers

Computational Biology will provide you more than your fair share of failed experiments.

As a result, you are very likely to publish more papers per unit time in Computational Biology.

Funding agencies want to see the junior researchers who have good ideas and can take them to completion.

Publication is the proof that you can <u>finish</u> projects.

You will have more flexibility in your research

You can move from flexibly from topic to topic more easily than you can if your skill set is linked to specific experimental techniques.

This flexibility in scope allows you to satisfy your intellectual curiosity or chase the latest trend as you wish.

You will have more flexibility in working practices

• Unlike being chained to the bench, you can do working from home.

Nick Loman @pathogenomenick

Best thing about doing bioinformatics; still being able to work with the baby sleeping on you. Try that in the lab. 3:58 PM - 31 Jul 2012

ocomicals com

Computational research is cost-effective

- Computational Biology research is cheaper than most experimental work that requires a large consumables budget.
- Cost-efficiency is also very important when you are starting your group and for maintaining continuity of productivity when riding out troughs in funding or group size.

A successful scientist ends up in an office

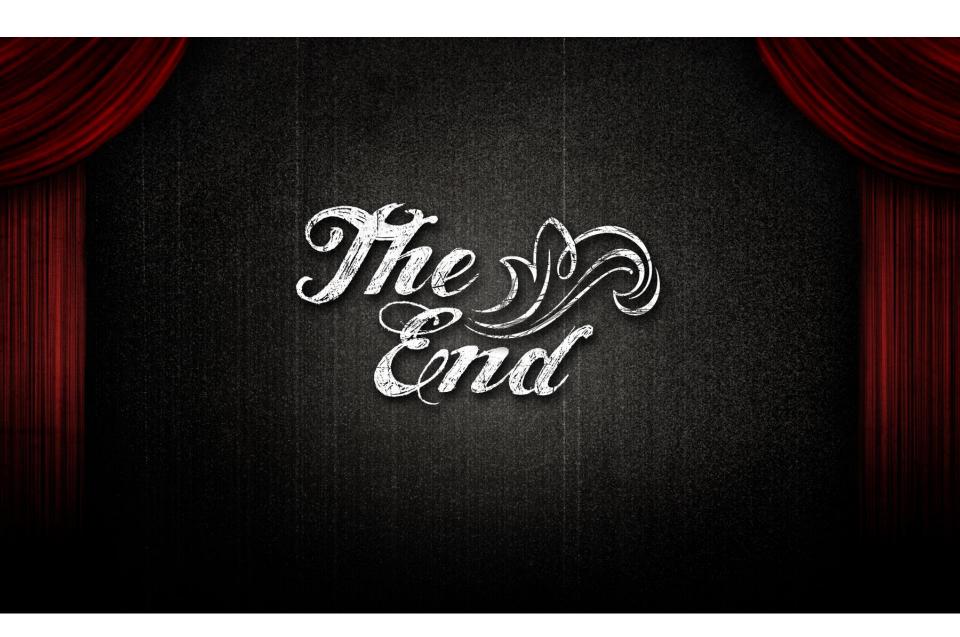
• The truth is that the native habitat for an academic researchers is sitting in their office in front of their computer.

<u>Webb Miller</u> (most highly-cited bioinformaticians)

• If you've really wanted to do research since you were young, then ask yourself: why train in skills you will never ultimately use for the majority of your career, while somebody else in your lab gets to have fun making all the discoveries?

According to Fast Future report

- Computational biology is going to be among the most popular jobs of the future.
- Besides, most NGS data will sit untouched and unloved unless there are better methods to collect information about phenotype.


Safer and Environment friend

Mason Vail :

"You're far less likely to spill a pathogen on yourself if you avoid the wet lab altogether ".

Another reason that came up in recent discussions is that computational work is more environmentally friendly.

Less plastic waste, less energy spent on autoclaving, etc.

